Co2 Mechanical Shaker (Single Stn.)

Description:

The Mechanical Shaker replicates the Zahm-Nagel 'Gold Standard' for Co2 measurement. The user places the package (PET, Glass or Can) in the holding device, the package is pierced using a cam operated mechanism which introduces the extraction probe and the temperature probe into the sample. After the safety door is closed the mechanism tilts the package to the horizontal position and the shaking cycle begins, the duration is set by the user. When complete a temperature and pressure reading is displayed on the screen for conversion by the user to Co2 their correlation chart.

Machine cycle:

Load Package - Pierce Package - Close safety door, press start - Automatic - Snift (if required) - Shake to preset duration - Display Temp. and Pressure - Unclamp and remove.

Calibration: Temperature and Pressure measurement functions are easily calibrated using a calibration routine in the software, both Temperature and Pressure calibrated at 2 points on the scale. A port for connecting a pressure calibration unit is provided (Temperature and Pressure calibration devices not supplied as standard).

Safety:

The Mechanical Shaker is equipped with a full polycarbonate safety enclosure with an interlocked door.

Technical details:

Min/Max Package vol:

- Cans 330 - 500ml Standard Cans,
- Glass bottles 290 – 1000ml
- PET 250 – 3000ml

Max Package dim’s:

- Diameter 125mm
- Height 400mm

Temperature: accuracy +/- 0.1 DegC (18 – 22DegC)

Pressure: accuracy 0.5 psi @ 50psi

Footprint dimensions: 45 x 60 x 80 cm’s (LxBxH).

Directors: Brian O Keeffe, Michael Wall,
Results: Pressure and Temperature displayed on HMI

Connections required: Electrical <5A, 110V (60Hz) or 230V (50Hz)

Note:

Snift:
Snift is the release of pressure from the headspace to atmosphere after piercing the package, some customers require to ‘snift’ the package before testing. This function can be switched ON/OFF on the operator HMI.

Additional information:

![Image](image1.png)

Directors: Brian O Keeffe, Michael Wall,